Asteroid bombardment helped to support early life on Earth

In the first billion years of Earth’s history, the planet was bombarded by primordial space rocks, while a faint Sun provided much less heat

comments
This artistic illustration shows how the early Earth might have looked under bombardment, with circular impact features dotting the daylight side, while hot lava glows on the night side. Image Credit: SwRI

This artistic illustration shows how the early Earth might have looked under bombardment, with circular impact features dotting the daylight side, while hot lava glows on the night side. Image Credit: SwRI

In the first billion years of Earth’s history, the planet was bombarded by primordial asteroids, while a faint Sun provided much less heat. A Southwest Research Institute-led team posits that this tumultuous beginning may have ultimately fostered life on Earth, particularly in terms of sustaining liquid water.

“The early impacts caused temporary, localised destruction and hostile conditions for life. But at the same time, they had a long-term beneficial effect in stabilising surface temperatures and delivering key elements for life as we know it,” says Dr. Simone Marchi, a senior research scientist at SwRI’s Planetary Science Directorate in Boulder, Colorado.

“Atmospheric and surface conditions during the first billion years of Earth’s history are poorly understood due to the scarcity of geological and geochemical evidence,” explains Marchi. However, ancient zircon crystals in sedimentary rocks provide evidence that our planet had liquid oceans, at least intermittently, during this earliest period. His team created a new model for impact-generated outgassing on the early Earth, showing how a resulting greenhouse effect could have counterbalanced the weak light from the infant Sun enough to sustain liquid water.

SwRI scientists created a new model for impact-generated outgassing on the early Earth. A large impact creates a transient high temperature atmosphere. Image Credit: SwRI

SwRI scientists created a new model for impact-generated outgassing on the early Earth. A large impact creates a transient high temperature atmosphere. Image Credit: SwRI

The findings could be key to understanding how life started on Earth despite the faint young Sun and havoc caused by collisions. Studies of other stars, as well as theoretical modelling, have shown that Sun-like stars begin their life about 20 to 30 per cent fainter in visible wavelengths than the Sun is at present. They gradually increase in luminosity over time.

“Today Earth is in the ‘Goldilocks zone,’ where liquid water can exist on its surface,” says Marchi. Referencing the fairy tale about the three little bears, the Goldilocks zone is an orbit around a star where it’s not too hot, nor too cold, for liquid water. Liquid water is generally considered a key ingredient for life. When the Sun was much fainter, the Earth with its present atmospheric composition would have been frozen solid. If the oceans were frozen, life may not have formed.

The most straightforward explanation would be a massive atmospheric greenhouse effect, from either carbon dioxide or methane, or both. Previous work has speculated that volcanic outgassing or impact-vaporised materials could have released greenhouse gases. Marchi’s team proposes a novel, more efficient mechanism As the planet was pummelled by primordial asteroids – some larger than 100 kilometres (62 miles) in diameter – impacts would melt large volumes of rock, creating temporary lakes of lava. These pools of lava could have released large quantities of carbon dioxide to the atmosphere.

“This early heavy bombardment could have been responsible for the large greenhouse effect needed to maintain warmer conditions, which may have been conducive to the early start for life on Earth,” says Marchi. “The bombardment also delivered large quantities of sulphur, one of the most important elements for life.”

Keep up to date with the latest space news in All About Space – available every month for just £4.99. Alternatively you can subscribe here for a fraction of the price!

Tags: , , , , , , , , ,