The most massive stars in the universe

Neutron stars, remnants of supernovae, are among the most massive objects in the cosmos.


A star with a mass of less than 1.5 solar masses (the mass of the Sun) forms a white dwarf at the end of its lifetime, owing to its gravity being too weak to collapse it further. If the mass of a star is greater than 5 solar masses, the forces will be so intense that the star collapses past the point of a neutron star and becomes a black hole. However, between these two extremes a neutron star will form as the result of a supernova, although only approximately one in a thousand stars will become one.

As a star runs out of fuel it will eventually collapse in on itself. In the formation of a neutron star, the protons and electrons within every atom are forced together, forming neutrons. Material falling to the centre of the star is crushed by the intense gravitational forces in the star and forms this same neutron material.

Like the Earth, magnetic fields surround a neutron star and are tipped at the axis of rotation, namely the north and south poles. However, the magnetic field of neutron star is more than a trillion times stronger than that of Earth’s.

The gravitational forces in a neutron star are also incredibly strong. The matter is so densely packed together into a radius of 12 miles (20km) that one teaspoon of mass would weigh up to a billion tons, about the same as a mountain. They also spin up to 600 times per second, gradually slowing down as they age

Oddly enough, as a neutron star gets heavier it also gets smaller. This is because a greater mass means a greater force of gravitational attraction, and thus the neutrons are squeezed more densely together. In fact, if you were able to drop an object from a height of one metre on the surface of a neutron star, it would hit the ground at about 1,200 miles (2,000 km) per second.

Image courtesy of ESO and L. Calçada.

Tags: , , ,