Juno Update: Spacecraft enters Jupiter’s magnetic field

The craft has made it to the planet’s magnetosphere, where the movement of particles in space is controlled by what’s going on inside the gas giant

comments
NASA's Juno spacecraft obtained this color view on June 28, 2016, at a distance of 3.9 million miles (6.2 million kilometres) from Jupiter. Image Credit: NASA/JPL-Caltech/SwRI/MSSS

NASA’s Juno spacecraft obtained this color view on June 28, 2016, at a distance of 3.9 million miles (6.2 million kilometres) from Jupiter. Image Credit: NASA/JPL-Caltech/SwRI/MSSS

NASA’s Jupiter-bound Juno spacecraft has entered the planet’s magnetosphere, where the movement of particles in space is controlled by what’s going on inside the gas giant.

“We’ve just crossed the boundary into Jupiter’s home turf,” says Juno Principal Investigator Scott Bolton of Southwest Research Institute, San Antonio. “We’re closing in fast on the planet itself and already gaining valuable data.”

Juno is on course to swing into orbit around Jupiter on 4 July. Science instruments on board detected changes in the particles and fields around the spacecraft as it passed from an environment dominated by the interplanetary solar wind into Jupiter’s magnetosphere. Data from Juno’s Waves investigation, presented as audio stream and colour animation, indicate the spacecraft’s crossing of the bow shock just outside the magnetosphere on 24 June and the transit into the lower density of the Jovian magnetosphere on 25 July.

“The bow shock is analogous to a sonic boom,” says William Kurth of the University of Iowa in Iowa City, lead co-investigator for the Waves investigation. “The solar wind blows past all the planets at a speed of about a million miles per hour, and where it hits an obstacle, there’s all this turbulence.”

The obstacle is Jupiter’s magnetosphere, which is the largest structure in the Solar System.

“If Jupiter’s magnetosphere glowed in visible light, it would be twice the size of the full moon as seen from Earth,” says Kurth. And that’s the shorter dimension of the teardrop-shaped structure – the dimension extending outward behind Jupiter has a length about five times the distance between Earth and the Sun.

The Juno spacecraft will be the second spacecraft after Galileo to swing into orbit around the gas giant. Image Credit: NASA

The Juno spacecraft will be the second spacecraft after Galileo to swing into orbit around the gas giant. Image Credit: NASA

Out in the solar wind a few days ago, Juno was speeding through an environment that has about 16 particles per cubic inch (one per cubic centimetre). Once it crossed into the magnetosphere, the density was about a hundredfold less. The density is expected to climb again, inside the magnetosphere, as the spacecraft gets closer to Jupiter itself. The motions of these particles traveling under the control of Jupiter’s magnetic field will be one type of evidence Juno examines for clues about Jupiter’s deep interior.

While this transition from the solar wind into the magnetosphere was predicted to occur at some point in time, the structure of the boundary between those two regions proved to be unexpectedly complex, with different instruments reporting unusual signatures both before and after the nominal crossing.

“This unusual boundary structure will itself be the subject of scientific investigation,” says Barry Mauk of the Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, who is the instrument lead for the Jupiter Energetic-Particle Detector Instrument (JEDI) on Juno.

The Juno spacecraft launched on 5 August 2011, from Cape Canaveral, Florida.

Keep up to date with the latest space news in All About Space – available every month for just £4.99. Alternatively you can subscribe here for a fraction of the price!

Tags: , , , , , , , ,