‘Pebble-formation’ likely to explain Mars’ small size, study finds

Astronomers think they may have explained why the Red Planet is smaller than Earth

comments
Mars is much smaller and has only 10 percent of the mass of the Earth. Image Credit: NASA/JPL/MSSS

Mars is much smaller and has only 10 percent of the mass of the Earth. Image Credit: NASA/JPL/MSSS

Using a new process in planetary formation modelling, where planets grow from tiny bodies called “pebbles,” Southwest Research Institute scientists can explain why Mars is so much smaller than Earth. This same process also explains the rapid formation of the gas giants Jupiter and Saturn, as reported earlier this year.

“This numerical simulation actually reproduces the structure of the inner Solar System, with Earth, Venus, and a smaller Mars,” says Hal Levison, an Institute scientist at the SwRI Planetary Science Directorate.

The fact that Mars has only ten per cent of the mass of the Earth has been a long-standing puzzle for Solar System theorists. In the standard model of planet formation, similarly-sized objects accumulate and assimilate through a process called accretion where rocks incorporated other rocks, creating mountains and then mountains merged to form city-size objects, and so on. While typical accretion models generate good analogues to Earth and Venus, they predict that Mars should be of similar size, or even larger than Earth. Additionally, these models also overestimate the overall mass of the asteroid belt.

“Understanding why Mars is smaller than expected has been a major problem that has frustrated our modelling efforts for several decades,” says Levison. “Here, we have a solution that arises directly from the planet formation process itself.”

New calculations by Levison and Katherine Kretke, Kevin Walsh and Bill Bottke, all of SwRI’s Planetary Science Directorate follow the growth and evolution of a system of planets. They demonstrate that the structure of the inner solar system is actually the natural outcome of a new mode of planetary growth known as Viscously Stirred Pebble Accretion (VSPA). With VSPA, dust readily grows to “pebbles” — objects a few inches in diameter — some of which gravitationally collapse to form asteroid-sized objects. Under the right conditions, these primordial asteroids can efficiently feed on the remaining pebbles, as aerodynamic drag pulls pebbles into orbit, where they spiral down and fuse with the growing planetary body. This allows certain asteroids to become planet-sized over relatively short time scales.

However, these new models find that not all of the primordial asteroids are equally well-positioned to accrete pebbles and grow. For example, an object the size of Ceres (about 600 miles across), which is the largest asteroid in the asteroid belt, would have grown very quickly near the current location of the Earth. But it would not have been able to grow effectively near the current location of Mars, or beyond, because aerodynamic drag is too weak for pebble capture to occur.

In the early stages of the Solar System, the rocky planets are thought to have been made from pebbles. Image Credit: NASA

In the early stages of the Solar System, the rocky planets are thought to have been made from pebbles. Image Credit: NASA

“This means that very few pebbles collide with objects near the current location of Mars. That provides a natural explanation for why it is so small,” says Kretke. “Similarly, even fewer hit objects in the asteroid belt, keeping its net mass small as well. The only place that growth was efficient was near the current location of Earth and Venus.”

“This model has huge implications for the history of the asteroid belt,” says Bottke. Previous models have predicted that the belt originally contained a couple of Earth-masses’ worth of material, meaning that planets began to grow there. The new model predicts that the asteroid belt never contained much mass in bodies like the currently observed asteroids.

“This presents the planetary science community with a testable prediction between this model and previous models that can be explored using data from meteorites, remote sensing, and spacecraft missions,” says Bottke.

This work complements the recent study by Levison, Kretke, and Martin Duncan (Queen’s University), which demonstrated that pebbles can form the cores of the giant planets and explain the structure of the outer Solar System. Combined, the two works present the means to produce the entire solar system from a single, unifying process.

“As far as I know, this is the first model to reproduce the structure of the Solar System — Earth and Venus, a small Mars, a low-mass asteroid belt, two gas giants, two ice giants (Uranus and Neptune), and a pristine Kuiper Belt,” concludes Levison.

Keep up to date with the latest space news in All About Space – available every month for just £4.50. Alternatively you can subscribe here for a fraction of the price!

Tags: , , , , , , , , , , , ,