[fototag id=”kankohmaru”]

Hover over the icons for more information. Illustration by Adrian Mann.

Sometimes when we envision the future of space exploration, we like to let our imagination get the better of ourselves. Today we’re seeing a new breed of rockets and space vehicles that are increasing our ability to access space like never before.

So when we come across a design like the Kankoh-maru, even though it’s blatantly obvious we won’t be seeing anything of the sort flying in our lifetimes, there’s no harm in dreaming of a future where such vehicles are commonplace, right?

The Kankoh-maru, as seen above, was a concept devised by the Japanese Rocket Society in 1993. Named after the steam-powered Japanese Kankō Maru warship, this bizarre egg-shaped vehicle would take off and land by itself, known as VTVL (vertical takeoff and landing), as a single-stage-to-orbit (SSTO) spacecraft. The whole thing is reusable and, with each launch, the Kankoh-maru could take 50 people into orbit.

In recent years a variety of tests on VTVL vehicles have been carried out, most notably SpaceX’s Grasshopper rocket, but nothing on the scale of the Kankoh-maru has ever really been considered, let alone tested.

Nonetheless, the design of the Kankoh-maru is certainly intriguing. This vehicle, weighing about 550 metric tons (1,200,000 pounds), would tower 23.5 metres (77 feet) above the ground and have a diameter at its base of 18 metres (59 feet).

The spacecraft is split into two sections, with a propulsion section at the bottom using four boosters and eight sustainer rockets providing thrust at sea level and in space respectively. Above the propulsion section is the payload section, with the cockpit sitting at the very top.

The purpose of this spacecraft would be to take a large number of crew into Earth orbit, either to a orbiting space hotel or just for short orbital trips. The ambitious goals of the spacecraft would see 700,000 passengers a year being taken into space via a fleet of 52 Kankoh-marus with a ticket price of $25,000 (£16,000) a head. Each of the 52 vehicles would be expected to fly 300 flights a year.

Maybe one day vehicles such as this will regularly take paying customers into space, offering extended stays on orbiting hotels or acting as the first leg of a journey to a futuristic lunar colony. Who knows. For now, we’ll simply have to imagine what could come to pass in a future where space travel is accessible to all, and the Kankoh-maru certainly fits the bill of affording that accessibility even if it is, you know, somewhat ambitious in its design.

You can follow Jonathan on Twitter @Astro_Jonny

FutureTech

This is one of the most ambitious spacecraft that’ll (probably) never fly in your lifetime

The Kankoh-maru is a reusable spacecraft that would be capable of taking 50 people to and from orbit – if it can even be built, that is.

[fototag id=”vinciplane”]

The testing of Virgin Galactic’s SpaceShipTwo and many other similar projects in various states of development means that we are about to enter an era of commercial spaceflight.

This will bring about huge changes in the aerospace industry, which has prompted the European Space Agency (ESA) to look at how it should respond to this new environment. Being only able to help and fund commercial suborbital spaceplane projects in Europe, ESA has proposed the construction of a generic European “Cryogenic Sub-orbital Spacecraft”.

ESA looked at three different reusable spaceplane concepts that could use the Vinci rocket engine that is currently being developed as an upper stage rocket for their Ariane launch vehicle. The first had a conventional tail assembly and wings, the second had a forward canard, wings and butterfly tail assembly, and the third had a canard and winglets.

The ESA report favoured the second vehicle concept, as the design allows it to carry payloads on its back that can be launched into low Earth orbit. It would have a total weight of 13,920 kilograms (30,625 pounds) at takeoff, and would operate from an airstrip like a conventional aircraft. Using a fuel load of 7,515 kilograms (16,534 pounds), it would blast the craft to a maximum speed of 4,176 kilometres (2,595 mph).

The Vinci engine, which is capable of being fired up to 5 times on each mission, takes the two crew and six passengers to a height of 107.65 kilometres (66.8 miles) where several minutes of weightlessness can be experienced before the craft glides back down to Earth.

This vision of a potential Vinci spaceplane would use the technology currently being developed by ESA, and it would be able to use ESA’s expertise in astronaut training and space medicine. ESA is also able to help the flow and exchange of information between interested parties and to help meet the demands of European Aviation Safety Agency certification and other European legal requirements.

The Vinci spaceplane would certainly be able to send a variety of payloads into orbit at a lower cost per launch than conventional rockets, and could be equal to the commercial suborbital spaceplanes being developed in the United States. Whether any European companies are willing or able to take up the technological and economic challenges that need to be surmounted, before the Vinci spaceplane can take flight, is something only time will tell.

FutureTech

Forget the Shuttle – the ESA’s Vinci spaceplane is the future of space travel

Our exclusive illustration gives you the world’s first opportunity to see what this new concept vehicle from the ESA could look like.